Abstract
Natural convection heat transfer from a vertical, 3.02 m high by 2.95 m long, electrically heat surface in air was studied. The air was at the ambient temperature and the atmospheric pressure, and the surface temperature was varied from 60 C to 520 C. These conditions resulted in Grashof numbers up to 2 × 1012 and surface-to-ambient temperature ratios up to 2.7. Convective heat transfer coefficients were measured at 105 locations on the surface by an energy balance. Boundary layer mean temperature profiles were measured with a thermocouple. Results show that: (1) the turbulent natural convection heat transfer data are correlated by the expression Nuy=0.098Gry1/3TwT∞−0.14 when all properties are evaluated at T∞; (2) variable properties do not have a significant effect on laminar natural convection heat transfer; (3) the transition Grashof number decreases with increasing temperature; and (4) the boundary layer mean temperaturue profiles for turbulent natural convection can be represented by a “universal” temperature profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.