Abstract

AbstractConnections between inhomogeneities and the failure behavior of brittle material may be investigated by finite element simulations of representative volume elements. Representative volume elements are typically subjected to periodic boundary conditions. Moreover, representative volume elements are often chosen as planar, i. e., two dimensional in order to reach reasonable statistics with regard to random distributions of inhomogeneities. The significance of such strongly simplified simulations needs to be validated, especially if the matrix failure is potentially dominated by defects, as is the case, e. g., in macro‐porous ceramics. We propose a quasi‐periodic concept to design specimens with cylindrical pores, which reproduce the stress state in a two dimensional representative volume element. This is achieved by a partial periodic replication of the region of interest. We suggest that material models used in simulations can be assessed by comparison between simulated and experimentally observed failure. (© 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.