Abstract

This paper presents a robust continuous nonlinear model predictive control (CNMPC) for a grid-connected photovoltaic (PV) inverter system. The objective of the proposed approach is to control the power exchange between the grid and a PV system, while achieving unity power factor operation. As the continuous nonlinear MPC cannot completely remove the steady-state error in the presence of disturbances, the nonlinear disturbance observer-based control is adopted to estimate the offset caused by parametric uncertainties and external perturbation. The stability of the closed-loop system under both nonlinear predictive control and disturbance observer is ensured by convergence of the output-tracking error to the origin. The proposed control strategy is verified using a complete laboratory-scale PV test-bed system consisting of a PV emulator, a boost converter, and a grid-tied inverter. High performance with respect to dc-link voltage tracking, grid current control, disturbance rejection, and unity power factor operation has been demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.