Abstract
To verify a structured model of the glucose-insulin system, metabolic measurements were compared with model-based simulations in insulin-dependent diabetic dogs which had been previously identified in terms of model parameters. Glycaemia, glucosuria, plasma insulin, and the rates of appearance R a and disappearance R d of glucose (kinetics of double-labelled glucose, evaluated according to Steele's equation in its non-steady-state version) were observed under the following conditions, starting from normoglycaemia during glucose-controlled insulin infusion (GCII): (I) insulin withdrawal, (II) insulin withdrawal and glucose infusion, (III) constant i.v. infusion of glucose and insulin, (IV) glucose infusion during GCII. After fitting the patterns of glycaemia, simulations of the other state variables were accomplished, employing the individual model parameters, the preset experimental inputs, and the GCII control constants (test IV only). Under nearly all conditions, correspondence was excellent between measured and simulated data. There were, however, the following exceptions: incomplete representation by the model of kinetics in glucose utilisation after interruption of insulin supply, overestimation of glucosuria by the model in the presence of insulin. It is concluded that the model provides a reasonable representation of metabolic processes which are of importance in the treatment of insulin-dependent diabetes mellitus and that it might thus appropriately simulate the outcome of metabolic regimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.