Abstract

This paper investigated the numerical scheme extended to solve the hyperbolic non-Fourier form of bioheat transfer equation and the experimental trials were conducted to validate the numerical simulation. MNPs were prepared via co-precipitation and modified with a silica layer. The amino modified Fe3O4/SiO2 nanoshells were covered with gold colloids producing nanoshells of Fe3O4/SiO2/Au (MNSs). In vitro assays were performed to determine the effect of apoptosis of QU-DB lung cancer cells based on the cells morphology changes. Cell damage was reduced by decreasing the power density of laser. Also, a larger area of damage on cell culture plates was observed at longer intervals of laser irradiation. The effect of nanoshell concentration and irradiation rate has been evaluated. A maximum temperature rise of 6°C was achieved at 184 W/cm2 and concentration of 0.01 mg/ml. The experiment confirmed a hyperbolic behaviour of thermal propagation. The results revealed that the three-dimensional implementation of bioheat equation is likely to be more accurate than the two-dimensional study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.