Abstract
We compare light reflectivity measurements as a function of the angle of incidence for an interface between an optical glass and a turbid suspension of small particles, with theoretical predictions for the coherent reflectance calculated with different available theoretical models. The comparisons are made only in a small range of angles of incidence around the critical angle of the interface between the glass and the matrix of the colloidal suspensions. The experimental setup and its calibration procedure are discussed. We considered two Fresnel-based approximations and another two based on a multiple-scattering approach, and we present results for monodisperse latex colloidal suspensions of polymeric spherical particles in water with particle diameters of 120 and 520 nm, polydisperse titanium dioxide (rutile) particles suspensions in water with a most probable diameter of 404 nm, and suspensions of copper particles in water with diameters of 500 nm. The comparisons between experiment and theory are made without fitting any parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.