Abstract
This current work offers the experimental method which is capable of measuring the air-methane gas using L-wave by an ultrasound sensor in a constant volume chamber (CVC). For experimental method, a constant volume chamber is integrated with of a high-sensitive ultrasound sensor, a conventional ultrasound sensor, a non-resistance cable, a temperature sensor, a pressure sensor and two mounted zigs. The main conditions, for the experiment defined in this work, are composed of 2 bar of initial pressure, 296 K of temperature, air-CH4 mixture of gas fuel, 25 V of input voltage, 3 Hz of pulse rate and 0.2-2 of measurement distance (m) for two different ultrasonic sensors. The resonant frequency is set 67.6, 70.6, 73.6 and 76.6 kHz by adjusting wavelength inside the circuit system. It is shown that sensitivity in ethylene vinyl acetate matching layer (EVAM) type is remarkably increased comparing with the chemical wood matching layer (CWM) type. Moreover, in comparison to the conventional CWM type, the amplitude height of EVAM type shows 1.19 V at 1st, 1.05 V at 2nd, 0.63 V of 3rd, 0.40 V at 4th and 0.27 V at 5th in CVC. With regards to the average percentage, the EVAM type is shown up to 116, 250, 270,263 and 350 % for 1st, 2nd, 3rd, 4th and 5th comparing with the conventional. Consequently, the voltage characteristics improved by EVAM type layer is demonstrated that energy transfer is higher than CWM type in CVC and efficiently led to increasing the ultrasonic sensitivity in an air-methane mixture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.