Abstract

Two-phase flow instability of natural circulation under a rolling motion condition is experimentally studied. The experimental results show the rolling motion induces a fluid flow fluctuation. At the trough point of the flow fluctuation, rolling motion can cause the early occurrence of natural circulation two-phase flow instability, and this case is defined as trough-type flow oscillation. The system stability decreases with increasing rolling amplitude and effect of rolling frequency is nonlinear. The complex overlap effect of trough-type flow oscillation and density wave oscillation can enhance the system coolant fluctuation; this case is defined as complex flow oscillation. Complex flow oscillation may be divided into two types: regular and irregular complex flow oscillations. Irregular complex flow oscillation is a transition type from trough-type flow oscillation to regular complex flow oscillation. Under the same thermal hydraulic conditions, the marginal stability boundary (MSB) of regular complex flow oscillation is similar to that of density wave oscillation without rolling motion, and the influences of rolling parameters on the MSB are slight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.