Abstract

In this paper, the thermal conductivity of Fe3O4 magnetic nanofluids has been investigated experimentally. The nanofluid samples were prepared using a two-step method by dispersing Fe3O4 nanoparticles into the water with the solid volume fractions of 0.1%, 0.2%, 0.4%, 1%, 2% and 3%. Thermal conductivity measurements were performed by employing a KD2 Pro thermal properties analyser under temperatures ranging from 20°C to 55°C. Then, using experimental data, a new correlation was proposed to predict the thermal conductivity ratio of the magnetic nanofluid. Finally, an optimal artificial neural network was designed to predict the thermal conductivity ratio of the magnetic nanofluid. The experimental results indicated that the maximum enhancement of thermal conductivity of nanofluid was about 90%, which occurred at solid volume fraction of 3.0% and temperature of 55°C. The comparative results showed that there are deviations of 5% and 1.5%, respectively, for correlation and ANN from the experimental data. It was found from comparisons that the optimal artificial neural network model is more accurate compared to empirical correlation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.