Abstract

An experimental investigation of carbon fiber-reinforced plastics cutting with an Nd:YVO4 picosecond pulsed system was presented. One-factor experimental design was used in order to explain the influence of cutting parameters including laser power, hatch distance and cutting speed on the pulsed laser–material interaction. The process parameters were optimized by using central composite design of response surface methodology. The results in kerf width, taper angle, material removal rate, and heat-affected zones were discussed through the micrographs observed with optical microscope. Specimens were cut with three different tools: picosecond pulsed laser, nanosecond pulsed laser, and conventional cutting, and the tensile strength and bending strength tests were conducted. Furthermore, the effect of the heat-affected zones on the static strength was also analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.