Abstract

The steel deck with rigid pavement has a lower risk of fatigue failure owing to the enhanced local rigidity. A reliable connection of steel plate and pavement and a convenient construction are critical concerns for this deck type. To seek a new application meeting the aforementioned requirements, this paper proposed a steel deck with adhesively bonded rigid pavement cast by non-reinforced ultra-high performance concrete (UHPC). To study the constructability and flexural properties of this deck type in a bridge deck system, four specimens including two with adhesively bonded connection and two reference ones with shear stud connection were fabricated and experimentally investigated by positive and negative bending tests. In addition, a simplified pretreatment of steel substrate was conducted before the application of epoxy resin to simulate the low quality of on-site construction. Experimental results indicate that the shear strength of the bonding connection with simplified steel pretreatment could decrease to half of that with strict preparation. Bending tests demonstrate that the adhesive bonding provides a more rigid connection between steel and concrete than shear studs did. The bonding failure load was 1.5 times the U-rib yielding load, indicating a high positive bending-carrying capacity of the deck. The adhesive provides better crack resistance than shear studs in negative bending. From a perspective on the bending behavior in the deck system, the adhesive bonding was reliable to obtain high bending capacities to resist actual vehicle loads. Besides, the non-uniform shrinkage of non-reinforced UHPC pavement can cause a 30% reduction of cracking strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.