Abstract

Abstract The phenomenon of saturated steam jet injection in subcooled quiescent water has many practical applications including in heat exchangers, steam jet pumps, steam dumping systems in nuclear plants, etc. The experimental setup is designed and fabricated indigenously to investigate this phenomenon at lower mass fluxes ∼120 and 150 kg/m2 s. The steam jet of conical shape has been observed for all the test conditions. The recorded axial temperature distribution showed that near the nozzle region, the temperature is governed by the saturated condition of steam while the later region is dependent on the water pool temperature. The maximum temperature is observed to be at the center of the jet. It has been found that the dimensionless penetration length of the steam jet in water is directly dependent on both the temperature of the water pool and the mass flux of steam. The dimensionless jet length has been found in the range ∼1.54–2.02 and 2.07–2.19 for mass fluxes ∼120 and 150 kg/m2 s, respectively. The average heat transfer coefficient has been found in the range ∼1.97–2.37 MW/m2 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.