Abstract

Abstract Experimental data on the phenomenon of nozzle choking at diffusion combustion of a high-speed hydrogen microjet at its ignition close to the nozzle are presented. As is found, such a phenomenon is due to the nozzle heating by the «bottleneck flame region» which is generated at the origin of microjet. This flow region persists up to transonic velocities of the microjet preventing from cooling of the nozzle and the transition to supersonic speed. In the case of hydrogen ignition far from the nozzle exit in supersonic conditions, the «bottleneck flame region» is suppressed, the flame becomes detached from the nozzle which is no longer heated so that the supersonic range is attained. The subsonic combustion of hydrogen microjet is stabilized by the «bottleneck flame region» while the supersonic one becomes more stable at the generation of shock cells. The results of the present study provide new details on the combustion of hydrogen microjets and could by useful for the operation of different burners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.