Abstract

In this paper, a Dual-Source Heat Pump (DSHP), able to exploit both aerothermal and geothermal energy sources, has been tested in ground mode to evaluate experimentally the soil thermal response in presence of an undersized Borehole Heat Exchanger (BHE) field. The field is instrumented with a Distributed Temperature Sensing (DTS) system, by which the geothermal fluid temperature can be measured over the entire length of the boreholes during the heat pump operation. The DSHP has been tested to reproduce the working profile of a heat generator coupled to a reference building, which has been numerically simulated by means of ALMABuild, a Matlab-Simulink tool. Three operating profiles have been identified within the simulation results to define three typical days of the heating season, characterized by different required loads. The results show that a DSHP operated in ground-mode and coupled to a borefield 50% undersized can meet completely the heating needs of a typical winter day, whilst higher building loads must be satisfied exploiting both air and ground sources. In this case, 80% of the undisturbed temperature of the soil can be recovered in an hour when aerothermal energy is extracted, thus the unit efficiency remains high and the investment cost is strongly reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.