Abstract
The evolution of freestream turbulence under the combined action of linear shear and stable linear temperature profile is investigated. The experiment is carried out in a small, open circuit, low-speed test cell that uses air as working fluid. The temperature gradient formed at the entrance to the test section by means of an array of 24 horizontal, differentially heated elements is varied to get a maximum Brunt-Vaisala frequency N o [=({ g T m }{ ∂T ∂y }) 1 2 ] of 3.1 −1. Linear velocity profiles are produced using screens of variable mesh size. The Reynolds number Re M based on centre-line velocity and mesh size is varied from 80 to 175. Isothermal studies are carried out in four different experiments with varying velocity gradients. The effect of inlet turbulence level on growth of turbulence is studied in these flows by keeping the shear parameter Sh (=( x u )( ∂u ∂y )) constant. The range of shear parameters considered is 2.5–7.0. Shear and stratification combined produce a maximum gradient Richardson number Ri g (= N o 2 ( ∂u ∂y ) 2 ) of 0.0145. Results have been presented in terms of evolution of variance of velocity fluctuations, Reynolds shear stress and temperature fluctuations. Measurements show the following: In isothermal flows the growth rate of turbulence quantities depends on both shear parameter and inlet turbulence level. There are distinct stages in the evolution of the flow and that can be identified by the power-law exponent of growth of turbulence. Shear is seen to promote the growth of turbulence and accelerate it towards a fully developed equilibrium state. Stratification initially suppresses the growth of turbulence and, hence, enhances the degree of underdevelopment. Under these conditions shear becomes active and subsequently enhances the growth rate of turbulence quantities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.