Abstract
The near and far pressure fields generated by round, isothermal and cold jets of diameter D = 38 mm with Mach numbers varying over the range 0.6 ≤ M j ≤ 1.6 are investigated experimentally, and characterized in terms of sound spectra and levels. Properties of near-field jet noise, obtained in particular at 7.5 diameters from the jet centerline, are documented. They differ appreciably from properties of far-field noise, and form a database that can be used for the validation of the acoustic fields determined by compressible Navier-Stokes computations. The near pressure fields originating from simulations can thus be directly compared, without resorting to extrapolation methods which might lead to uncertainties in the far pressure fields. In the present paper, sound source localizations are also carried out from the near-field pressure signals. The experiments provide in addition far-field results evaluated at 52 diameters from the nozzle exit, in good agreement with the data of the literature. The classical dependence of jet noise features with the emission angle is observed. The level and frequency scalings of the pressure spectra obtained for subsonic jets in the sideline and downstream directions are also studied. For small radiation angles, the narrow-banded sound spectra measured are found to scale as the Strouhal number, whereas, as previously noted by Zaman & Yu [1], the one-third octave spectra seem to scale as the Helmholtz number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.