Abstract

This paper presents the results of an experimental study designed to explore both qualitatively and quantitatively the mechanism of the improved current gain in bipolar transistors with polysilicon emitter contacts. Polysilicon contacts were deposited and heat treated at different conditions. The electrical properties Were measured using p-n junction test structures that are much more sensitive to the contact properties than are bipolar transistors. A simple phenomenological model was used to correlate, the structural properties with electrical measurements. Possible transport mechanisms are examined and estimates are made about upper bounds on transport parameters in the principal regions of the devices. The main conclusion of this study is that the minority-carrier transport in the polycrystalline silicon is dominated by a highly disordered layer at the polysilicon-monosilicon interface characterized by very low minority-carrier mobility. The effective recombination velocity at the n+polysilicon-n+monosilicon interface was found to be a strong function of fabrication conditions. The results indicate that the recombination velocity can be much smaller than 104cm/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.