Abstract

Waste heat recovery from the flue gas of gas-fired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue gas. The experiments measured the effects of inlet air temperature, inlet air velocity and circulating water flow rate on the flow and heat transfer. The results show that higher inlet air temperatures and lower inlet air velocities lower the flow resistance and increase the heat transfer coefficient. The stainless steel packing had better surface wettability and larger thermal conductivity than the plastic packing, which enhanced the heat transfer between the water and the saturated moist air. When both the flow resistance reduction and the heat transfer enhancement were considered, the experimental results gave an optimal packing-specific surface area. A packed heat exchanger tower was designed for waste heat recovery from the flue gas of gas-fired boilers based on the experimental results which had better flow and heat transfer characteristics with lower pump and fan power consumption, more stable system operation and less thermal fluctuations compared with a non-packed heat transfer system with atomized water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.