Abstract
This study presents the microbubble coalescence process in a confined microchannel. Triple T-junction microfluidic devices with different main channel size were designed to generate monodispersed microbubble pairs with air/n-butyl alcohol–glycerol solution as the working system. The head-on collision of microbubble pair was realized in the microfluidic devices. Three collision results including absolute coalescence, probabilistic coalescence, and non-coalescence were distinguished. The effects of liquid viscosities and two-phase superficial velocities on the coalescence behavior were determined. The results showed that microbubble coalescence process in the confined space was slightly faster than in the free space. Increasing liquid viscosity apparently prevents coalescence. In the probabilistic coalescence region, higher two-phase superficial velocity could reduce the percentage of coalescence events. Two characteristic parameters representing the bubble contact time and film drainage time have been introduced to analyze the microbubble coalescence behaviors and a linear correlation could clearly distinguish the coalescence and non-coalescence region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.