Abstract

The process of CO2 flashing through hydrous albite-hedenbergite melt was experimentally examined at a temperature of 1100°C and a pressure of 2 kbar. Carbon dioxide was generated when the melt interacted with calcite, and wollastonite was the predominant synthesized phase. Mafic components were introduced into the hydrous albite melt via the dissolution of natural hedenbergite. Raman spectroscopic data on bubbles of the fluid phase in the quench glass indicate that the CO2/H2O proportions of the bubbles vary. IR spectroscopic data on the glass prove that the water concentration after CO2 flashing decreased from 5.5 to approximately 3 wt %. The comparison of the composition of the recrystallized clinopyroxene in contact with melt (with and without CO2 blowing) indicates that CO2 oxidizes Fe in the melt. The redox effect of CO2 is quantified by the empirical clinopyroxene tool for metering oxygen fugacity (oxometer), which was calibrated based on experimental data. The oxygen fugacity in our experiments with CO2 flashing (estimated by the clinopyroxene oxometer) was NNO + (3.0–3.5). Our estimates with the application of the clinopyroxene oxometer indicate that the maximum oxygen fugacity in the magmatic chambers of Vesuvius and Stromboli volcanoes (which are bubbled with CO2) is also close to NNO + (3.5 ± 0.5).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.