Abstract
AbstractThis study investigates the turbulent flow properties experimentally in the vicinity of two side-by-side circular cylinders, along with the influence of the third cylinder of the same dimension placed in the upstream and successively in the downstream forming an equilateral triangle. Three-dimensional stereoscopic particle image velocimetry (PIV) was employed to collect the instantaneous velocity data around the arrangements. The study highlights the prime parameters of turbulence such as the mean velocities, Reynolds stresses, turbulent kinetic energy (TKE), quadrant analysis, and Q-criteria for vortices, which are responsible for the development of various problems such as scour-hole around the cylindrical pier arrangements, disturbance around industrial and marine structures. The spectral analysis was performed to examine the energy distributions, vortex-shedding frequencies with corresponding Strouhal numbers. Dominant vorticity locations were identified from the contours of Q-criteria. The magnitude of turbulence characteristics was reduced by 15–20% (turbulence intensity reduced by 20% and TKE by 15%) when the third cylinder was placed the upstream of side-by-side cylinder group. Streamlines are also studied to visualize the flow patterns for a better understanding of physics in the presence of the third cylinder. The maximum energy of vortices obtained from the spectrum analysis showed that the vortices generated were less when the third cylinder is placed upstream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.