Abstract

The experiments of the dissolution kinetics of fluorite were performed in aqueous HCl solutions over the temperature range of 25–100 °C using a flow-through experimental apparatus. With a constant input of aqueous HCl solution through the reactor, output concentrations of the dissolved species Ca, F, Cl vary with flow rate, as well as with the surface compositions. Measured output concentrations of dissolved species and the pH can be used to determine a rate law for fluorite dissolution. Fluorite dissolution rates are found to be pH dependent. Usually, dissolution rates of fluorite decreases with increasing dissolved Ca in the output solution at 25 and 100 °C. Dissolution rate can be expressed as $$-r=k((a_{\rm H}^{+})^{2}/(a_{\rm Ca}^{2+}))^{\alpha} $$ (1a) where k is the rate constant and α is the order with respect to the hydrogen ion activity vs. the activity of dissolved Ca. The α was obtained from kinetic experiments. For the fluorite sample passed through 18–35 mesh, α =1.198 at 100 °C and k = 10−0.983, while fluorite dissolved in HCl–H2O solution at pH 2.57 of input solution. Adsorption of a proton and Cl−1onto the fluorite surface, surface cation exchange and the formation of the surface complex Ca(F, Cl)2 and/or (H2x, Ca1−x)(F, Cl)2 control dissolution rates. Investigation of the fluorite surface before and after dissolution by using X-ray photoelectron spectroscopy (XPS) indicate that surface modifications affect reaction rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.