Abstract

The performance of a heat-pipe solar collector was investigated experimentally using refrigerants R11 as the working fluid. The unit is fabricated locally and its performance is evaluated under Beirut Solar conditions. The heat transfer from the heat pipes to the hot-water storage tank took place through a circular end condenser section of the heat-pipe integrated within the collector frame. Tests of single heat pipes showed that the thermal performance of the heat pipe were dependent on its tilt angle, condenser section length and configuration, and type of internal wick used. A circular condenser end of the heat-pipe performed better than a straight condenser due to increased surface area for heat transfer. The R11-charged solar collector with integrated condenser for secondary cooling of water had an efficiency in early operation hours that reached values higher than 60% for the forced circulation mode. The instantaneous system efficiencies varied from 60 to 20%, which are in the range of conventional water solar collectors. System response was fast and sensitive to the incident solar radiation. The thermosyphonic mode of the system operation generated build up of stored energy in the condenser, resulting in oscillating-type flow thus reducing system efficiency below values obtained with forced circulation. © 1998 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.