Abstract

Experimental studies are reported for crack detection of a beam structure under a static displacement with the spatial wavelet transform. An invisible perturbation in the deflection profile of the beam at the crack position due to its existence would be induced. Such a small perturbation will be discerned or amplified through a wavelet transform such that a detection of crack location becomes possible practically. To realize this, the static profile of a cracked cantilever aluminum beam subjected to a static displacement at its free end is analyzed with Gabor wavelet to identify the crack. The damage detection of the beam with different crack depths is conducted. The spatial wavelet transform is proven to be effective in identifying the damage area even when the crack depth is around 26% of the thickness of the beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.