Abstract

The Air Force Research Laboratory led a research effort to benchmark the accuracy of static and fatigue predictions of several emerging composite progressive damage analysis techniques. The static portion of this technical effort is described in detail in a previous special issue of the Journal of Composite Materials. This paper provides the details of the fatigue experiments that were conducted to calibrate and validate the computational models. Initially, in-plane and out-of-plane S–N curves were generated through coupon tests that were performed on unidirectional laminae. The challenges experienced during fatigue testing of in-plane, matrix-dominated unidirectional coupon specimens are presented in detail. The higher fidelity test data from the fiber-dominated and out-of-plane experiments are also included in this paper. Following the calibration experiments, a series of tension–tension fatigue validation tests were conducted on open-hole coupons with three different stacking sequences. Each specimen was cycled to a pre-determined number of fatigue cycles, followed by static residual strength tests in both tension and compression. This paper provides the stress–strain responses of these validation tests as well as high-resolution X-ray computed tomography images of the subsurface damage as a function of cycles. Seven analysis teams used these test results to calibrate their models and to benchmark the accuracy of their predictions of damage and residual mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.