Abstract
Deep narrow metal grooves have wide application prospects in the field of aeronautics and astronautics. Electrochemical machining (ECM) has a unique advantage in the fabrication of deep narrow grooves due to its advantages of no cutting heat, no cutting force, and high machining efficiency. But, there is significant stray current corrosion in the side wall of the deep narrow groove, which restricts the enhancement of the processing accuracy. In the interest of improving the processing accuracy of the deep narrow groove, the effects of compound feed and matching of pulse and oscillation (MOPAO) on the average current density distribution of the deep narrow groove side wall were studied based on finite element analysis (FEA) of the electrostatic field. The finite element simulation results show that the homogeneity of the deep narrow groove could be significantly improved with the increment of the oscillation amplitude, and the processing accuracy could be improved by prolonging the pulse turn-off time. Moreover, contrast experiments on the deep narrow groove ECM were carried out based on a self-developed ECM system. The experimental results indicate that the matching of pulse and oscillation can remarkably improve the processing accuracy, and smaller average groove width and better groove width uniformity can be obtained in comparison with the compound feed. Moreover, the maximum groove width is 2.78 mm, the minimum groove width is 2.73 mm, the length-width ratio reaches 11:1, and the depth-width ratio reaches 9:1 using the machining mode of MOPAO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.