Abstract
The main objective to guarantee a high efficiency in the press shop is to produce sheet metal parts without failure. The feasibility of sheet metal parts is nowadays ensured during the development process by a comparison of the occurring strains in the simulation with the Forming Limit Diagram (FLD). The principle of the experimental procedure to determine the FLD is standardized in ISO 12004–2 [1]. This procedure is only valid with high accuracy for proportional unbroken strain paths. However, in most industrial forming operations non-linear strain paths occur. To resolve this problem, a phenomenological approach was introduced by Volk [2], the so-called Generalized Forming Limit Concept (GFLC). Localized necking and the remaining formability for any arbitrary non-linear strain path can be predicted with the GFLC. Furthermore, experimental investigation of multi-linear strain paths appears highly complex in practice and involves a range of testing equipment, e.g. different specimens, testing machines and tools. In this paper an alternative method is introduced by using a cruciform specimen and a draw bead tool on a sheet metal testing machine. The different draw bead heights allow the creation of arbitrary strain states, which can be changed at different height of the punch. Conventionally cruciform specimens are used to determine the yield loci in the first quadrant of the stress space at low strain values. To enable a cruciform specimen for the evaluation of strain limits comparable to the conventional Nakajima test, an optimization of the geometry regarding the maximum achievable strains in the specimen center takes place. The developed specimen and tool allow testing of materials under multi-axial strain states with a reduced testing effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.