Abstract

The aim of this study was to understand the off-axis tensile properties of the developed two dimensional multistitched multilayer E-glass/polyester woven nano composites. It was found that the specific off-axis tensile strength of unstitched structure was higher than that of the machine stitched structure due to stitching caused filament breakages. But it was slightly lower than that of the machine stitched/nano structure. In addition, the specific off-axis tensile strength of machine stitched/nano composite structure was slightly higher than that of the machine stitched structure. When the nano silica material in the unstitched E-glass/polyester composite structure increased, the off-axis specific tensile strength and the modulus of the unstitched/nano structures increased whereas, the off-axis specific tensile strain of the unstitched/nano structures decreased. The damaged areas of the unstitched/nano structures increased, when the nano silica material in the unstitched E-glass/polyester woven composite structures increased. The failures under the off-axis tensile load of the stitched or stitched/nano structures were confined at narrow area due to the multistitching. On the other hand, it was observed that the off-axis failure of unstitched/nano or stitched/nano woven E-glass/polyester composite structures showed more brittle behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.