Abstract

Observations are presented from experiments where laminar flame bubbles were perturbed successively by incident and reflected shock waves. Significant flame acceleration was observed in many instances, with the flame closely coupled to the reflected shock wave. The coupled waves are interpreted using a generalized Hugoniot analysis. As the incident shock velocity increased, detonation emerged near the highly convolved reaction zone. Prior to detonation the external visual attributes of the combustion fronts appear identical to turbulent combustion. However, they cannot be due to classical isotropic turbulence. The overall conclusion is that the observed enhancement of combustion is driven by chemi-acoustic interactions and related gas-dynamic effects. An analysis of the prevailing thermodynamic states suggests that thermal auto-ignition chemistry could also play a significant role prior to the onset of detonation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.