Abstract

The waveguide invariant in shallow water environments has been widely studied in the context of passive sonar. The invariant provides a relationship between the frequency content of a moving broadband source and the distance to the receiver, and this relationship is not strongly affected by small perturbations in environment parameters such as sound speed or bottom features. Recent experiments in shallow water suggest that a similar range-frequency structure manifested as striations in the spectrogram exists for active sonar, and this property has the potential to enhance the performance of target tracking algorithms. Nevertheless, field experiments with active sonar have not been conclusive on how the invariant is affected by the scattering kernel of the target and the sonar configuration (monostatic vs bistatic). The experimental work presented in this paper addresses those issues by showing the active invariance for known scatterers under controlled conditions of bathymetry, sound speed profile and high SNR. Quantification of the results is achieved by introducing an automatic image processing approach inspired on the Hough transform for extraction of the invariant from spectrograms. Normal mode simulations are shown to be in agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.