Abstract
New fullerene salts (TMP(+))2·(C60(2-))·(C6H4Cl2)2 (1), {DB-18-crown-6·[Na(+)]·(C6H5CN)2}2·(C60(2-))·C6H5CN·C6H4Cl2 (2), {cryptand[2,2,2]·(Na(+))}2·(C60(2-)) (3) and (PPN(+))2·(C60(2-))·(C6H4Cl2)2 (4) were obtained as single crystals. Their crystal structures were solved and their optical and magnetic properties were analyzed. The spectra of the salts in the IR and UV-visible-NIR ranges indicate the formation of C60(2-) dianions in 1-4. These salts show similar behavior in EPR measurements, explained by the diamagnetic ground state of the C60(2-) dianions and the thermal population of the excited triplet state, which is separated by an energy gap of 487-540 cm(-1). The magnetic susceptibility of 4 also increased above 130 K due to the population of the excited triplet state. The observed splitting of the C60 LUMO is attributed to the Jahn-Teller (JT) effect. We analyzed the splitting by an extended Hückel method using the single-crystal structural data for the compounds containing neutral, mono- and dianions of C60. The splitting of the initially triply degenerated C60 LUMO produces three molecular orbitals. The gap between the lowest and highest orbitals is very small in neutral C60 (128-140 cm(-1)), it increases in C60(˙-) (500-710 cm(-1)) and increases further in C60(2-) (1080-1670 cm(-1)). It was found that the splitting of the C60 LUMO is realized in different ways for the mono- and dianions. The ground and first excited state are separated in C60(˙-) by a small gap of 55-180 cm(-1) only. This gap is noticeably larger in the C60(2-) dianions and falls into the 760-1390 cm(-1) range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.