Abstract

The first three mode shapes of a cantilevered NACA0009 hydrofoil were experimentally investigated in air and under different flow conditions in a cavitation tunnel. First and second bending modes and first torsion mode were determined in resonance conditions with the hydrofoil vibrating in air, in still water, in flowing water, or with leading edge sheet cavitation. The hydrofoil was excited with embedded piezoelectric ceramic patches, and the response was measured along the surface at selected positions by means of a laser Doppler vibrometer. The modes of vibration obtained from a cross correlation analysis of the signals were compared for the different conditions, and the most significant differences were identified. In particular, it was found that the mode shape deformation and the location of the nodal lines are dependent on the fluid conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.