Abstract

Phonons are quasi-particles, observed as lattice vibrations in periodic materials, that often dampen in the presence of structural perturbations. Nevertheless, phonon-like collective excitations exist in highly complex systems, such as proteins, although the origin of such collective motions has remained elusive. Here we present a picture of temperature and hydration dependence of collective excitations in green fluorescent protein (GFP) obtained by inelastic neutron scattering. Our results provide evidence that such excitations can be used as a measure of flexibility/softness and are possibly associated with the protein’s activity. Moreover, we show that the hydration water in GFP interferes with the phonon propagation pathway, enhancing the structural rigidity and stability of GFP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.