Abstract
Although different predictive models forecast that climate change will alter the distribution and incidence of parasitic diseases, few studies have investigated how microclimatic changes may affect host-parasite relationships. In this study, we experimentally increased the temperature inside nest boxes of the blue tit Cyanistes caeruleus during the nestling period at two different latitudes (central Spain and central Germany) to determine its effect on parasite abundance. The two localities have contrasting climate conditions: the southern one in Spain is warmer and drier than the northern one in Germany. Consistent with this, we observed that the parasitic fauna in nests at the two localities differs. The flea species Ceratophyllus gallinae was more abundant in the northern locality, while the blowfly species Protocalliphora azurea and biting midge species of the genus Culicoides were more abundant in the southern one, as were blood parasites. Moreover, dermanyssid mites and blackflies (Simuliidae) were observed only in the southern locality. The temperature inside nest boxes was increased using heat mats placed underneath the nest material during the nestling period (day 3 to day13 post-hatching). Compared with control nests, the average temperature in heated nests increased by 2.24 °C and 1.35 °C at night in Spain and Germany, respectively. Consequently, the average relative humidity in heated versus control nests decreased 4.93 and 0.82 units in Spain and Germany, respectively. The abundance of blowfly pupae in the heated nests was significantly lower than that of control nests at both localities. The abundance of larval fleas was also lower in the heated nests, but only at the Spanish locality. Infection by the blood parasites Haemoproteus/Plasmodium was higher in males attending the heated nests in Germany, and the control nests in Spain. Moreover, both male body mass and nestling wing length were negatively related to the abundance of larval fleas. In conclusion, our results indicate that increased temperature at the nestling stage may affect the fitness of blue tits by altering parasite prevalence rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Parasitology: Parasites and Wildlife
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.