Abstract

The critical point is the end point of a phase equilibrium curve; liquid and its vapor can coexist under designated points. Close to the critical point, thermophysical properties present clear variations, especially in the region of 0.85Pcr∼Pcr. Latent heat and liquid density in this region decrease more quickly than in lower-pressure areas, resulting in unique boiling heat transfer behavior. This region is also called the near-critical region. However, only a few scholars have discussed the heat transfer phenomenon; thus, it is difficult to ascertain the near-critical region’s properties and characteristics from extant literature. In the present study, we conduct experimental investigations to explore the specificities of the heat transfer characteristics of carbon dioxide in horizontal flow within the near-critical region in a circular channel with a diameter of 4 mm. The operating pressure ranges from 6.26 MPa to 7.3 MPa with a mass flow rate between 200 and 400 kg/m2 s, heat flux between 5 and 140 kW/m2, and test section inlet temperature of −5 °C. Then, we examine the inner-wall temperature and heat transfer coefficient profiles at different pressures within the near-critical region. The results show that at high heat flux, departure from nucleate boiling (DNB) phenomenon presents with a sudden decrease in the heat transfer coefficient in the subcooled region. The higher the heat flux, the more seriously deteriorating the heat transfer is. Interestingly, the temperature reaches its peak in the post-DNB region rather than at the critical vapor quality point. With an increase in pressure, DNB occurs early with lower vapor quality, and the temperature peak decreases at the given heat flux and mass flux. On the contrary, DNB is delayed with an increase in mass flux. A series of boiling heat transfer correlations in a subcooled region, two-phase flow region, and superheated region are proposed in addition to a new predictive correlation for critical heat flux in the near-critical region at a given mass flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.