Abstract

The near field of a turbulent circular pipe jet laden with rigid rod-like particles is investigated experimentally by means of particle image velocimetry. Two mass fraction loadings are examined at a Reynolds number equal to 9,000. A simple and robust phase discrimination scheme based on image intensity threshold is presented and validated. Simultaneous flow and dispersed phase velocities data are discussed and compared to literature data for spherical and elongated particles providing insight on phase interactions. Being the Stokes number around unity, both inertial and dynamical effects have high relevance, the former giving rise to velocity lag among particles and fluid and the latter to turbulence modulation in the carrier flow induced by the dispersed phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.