Abstract

An experimental study was conducted to develop and characterize systematically a new turbulence generator system to yield large turbulent Reynolds numbers in a compact configuration. The effect of the geometric parameters of two families of high-blockage plates on the resulting turbulent flow field was systematically studied: one series of plates was characterized by the number and distribution of circular openings; a second series had non-circular opening(s) with different shapes, distribution and position of the opening(s). The plates were placed upstream of a contoured contraction and the near field at the centerline of the resulting turbulent free jet was characterized by hot-wire anemometry in terms of mean axial velocity, turbulence intensity, turbulence length scales and corresponding Reynolds numbers. The plate with a central, non-circular opening produced the best compromise of highest turbulence levels along with excellent uniformity in average velocity and turbulence intensity, as evidenced by scan in the transverse direction. It appears to be the most promising one. By comparison with more traditional approaches to turbulence generation, we increased the turbulent Reynolds numbers based on the integral length scale to values on the order of 1000, which was one of the design objectives. Other plate geometries also yielded intense turbulence, but, in some cases, exhibited spurious frequency peaks in their power spectrum. The turbulent generation approach is to be adapted to combustion studies to reproduce conditions typical of practical system in relatively small experimental set-ups that are well-suited for bench-top experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.