Abstract

In the context of explosion protection, very conservative safety factors need to be considered, e.g. in the design of electrical devices. This is due to standards which are mainly based on empirical data as opposed to a detailed knowledge of the underlying physiochemical processes. In this work, the early phase of ignition of burnable gas mixtures close to their respective minimum ignition energy is investigated experimentally by means of high-speed schlieren imaging. Our data quantifies how the ignition process at such low energies becomes less repeatable which is evidenced by a high scattering of the flame propagation. It was found that, depending on the mixture, the flow field induced by the electrical discharge may exhibit a considerable effect on the ignition process. This effect is more pronounced for mixtures which are characterized by a large Lewis number, thus, leading to a more random flame propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.