Abstract

Longer channels within serpentine flow fields are highly effective at removing liquid water slugs and have little water accumulation; however, the long flow path causes a large pressure drop across the cell. This results in both a significant concentration gradient between the inlet and outlet, and high pumping losses. Parallel flow fields have a shorter flow path and smaller pressure drop between the inlet and outlet. This low pressure drop and multiple routes for reactants in parallel channels allows for significant formation of liquid water slugs and water accumulation. To investigate these differences, a polymer electrolyte membrane fuel cell parallel flow field with the ability to modify the length of the channels was designed, fabricated, and tested. Polarization curves and the performance, water accumulation, and pressure drop were measured during 15 min of 0.5 A cm −2 steady-state operation. An analysis of variance was performed to determine if the channel length had a significant effect on performance. It was found that the longer 25 cm channels had significantly higher and more stable performance than the shorter 5 cm channels with an 18% and an 87% higher maximum power density and maximum current density, respectively. Channel lengths which result in a pressure drop, across the flow field, slightly larger than that required to expel liquid water slugs were found to have minimal water accumulation and high performance, while requiring minimal parasitic pumping power. ► The effects of flow-field channel length on water accumulation and performance are investigated. ► Polarization curves are measured for 5 cm, 15 cm, and 25 cm parallel channel lengths. ► Performance, water accumulation, and pressure drop are measured during steady-state operation. ► Longer flow-field channels had higher and more stable performance, and decreased water accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.