Abstract

We investigate theoretically and experimentally the nonlinear dynamics of a synchronously pumped all-fiber passive ring cavity. Our study is based on the use of a specially designed stabilization system that allows for interferometric control of the cavity length. With this system we can achieve stable operation and we are able to perform systematic and reproducible measurements for the characterization of the fundamental nonlinear behaviors of the cavity such as optical bistability, period doubling instabilities, and dissipative modulational instabilities. Through the analysis of the output pulse spectra we show that modulational instability plays a crucial role in the dynamics of the cavity (in particular, in the period-doubling route to chaos) even with normal group-velocity dispersion. A theoretical study of modulational instability in the cavity is presented and is successfully compared with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.