Abstract

Abstract The occurrence of blade vibrations in radial turbines leads to limit cycle oscillations, which in time increase the risk of component failure due to high cycle fatigue. In this context, the precise determination of the resonance operating points and the estimation of the vibration magnitudes are essential for an accurate assessment of the service life of the turbocharger components. In radial turbines forced blade vibrations are primarily flow induced. These vibrations are produced by the non-uniform flow field in the circumferential direction which acts on the blades as a cyclic pressure fluctuation. Previous studies have identified the inlet guide vane (IGV) and the spiral turbine housing as the primary sources of the non-uniform flow field. In the present study a thorough experimental investigation of the synchronous blade vibrations of a radial turbine is performed. First, the blade vibration modes were measured experimentally and calculated numerically for the determination of the speed ranges that need to be examined. Subsequently, the vibrations were captured with two redundant measurement systems during real turbocharger operation. Strain gauges were applied on certain blades while eight optical sensors were distributed on the circumference of the turbine shroud for the measurement of the blades tips deflection through a commercial tip-timing system. In the first part, the blade vibrations caused by the “nominal” IGV are presented. Part 2 analyses the changes of the blade vibrations due to the application of two different IGVs. The first IGV has the same number of vanes as the “nominal” IGV. Nevertheless, it generates additional low engine order excitations by intentionally varying the distance between the vanes. Next, an IGV with a higher number of vanes is employed for the excitation at higher frequencies and thus of higher blade modes. Contrary to expectations, certain synchronous vibrations can be measured in the experiments of all IGVs. These cannot be attributed to the spiral turbine casing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.