Abstract

The article presents research results of a machine-tractor unit that performs two technological operations simultaneously: (i) chopping plant residues (sunflower stubble); (ii) covering the chopped stubble with the soil. The first operation is carried out with a front-mounted plant residues chopper, and the second one is carried out with a rear-mounted plough. The chopper’s working devices are rotated by the tractor’s front power take-off (PTO), which has two operating modes: 540 and 1000 rpm. It was determined that to reduce the dynamic load in the drive of the chopper’s plant residues working devices, to chop these residues qualitatively, and then to cover them with the soil, the tractor’s front PTO should be adjusted to a speed of 1000 rpm. With this mode of the chopper’s working device’s rotation, the difference in its vertical vibrations’ dispersion and the tractor front axle’s oscillations is insignificant. The variance of the plowing depth vibrations (1.44 cm2), changing aperiodically in the frequency range of 0–2.5 Hz, is not accidentally less than the variance of irregularities vibrations of the longitudinal field profile (2.75 cm2). The plough draft resistant oscillations of the plow-chopping unit had the least impaction at the plowing depth oscillations. The proof of this is the small value of the cross correlation function; for such oscillating processes as ‘plough draft resistance—plowing depth’, it was equal to 0.22, which is 3.4 times less than for oscillating processes ‘surface’s longitudinal profile—plowing depth’. The number of chopped particles less than 15 cm in length increased by 1.5 times, and the number of particles longer than 30 cm decreased by 3 times. With the complete incorporation of plant residues into the soil, their non-chopped part did not exceed 1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.