Abstract

Forming the first part of a two-part paper, the quantification of the resonant response levels and the damping quantities for a centrifugal compressor impeller with variable inlet guide vanes under engine representative operating conditions is detailed in this work. The motivation for the investigation is the lack of experimental data that are needed to improve and validate computational tools used during the design phase. Measurements were performed during resonant blade vibrations with the inlet pressure, the inlet guide vane angle and the operating point as the varying parameters. The flow non-uniformity introduced into the inlet flow field was measured with an aerodynamic probe. These measurements showed an increase in flow distortion for increased guide vane angles. The response amplitudes were acquired with dynamic strain gauges. A curve-fit method was applied to estimate the critical damping ratios. The results showed a linear correlation of the aerodynamic damping with the inlet pressure. The mode dependent material damping was therefore derived using a linear extrapolation to vacuum conditions of the inlet pressure dependent overall damping. The resonant blade dynamics could be captured with a single degree of freedom model. The aerodynamic damping and the maximum strain response were found to significantly depend on the inlet guide vane angle setting and on the throttle setting of the compressor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.