Abstract

We present the design and results of experimental verification methods for ultra-low-power digital circuits based on the recently introduced energy-efficient single flux quantum (eSFQ) logic. Similar to another low-power SFQ logic, ERSFQ, eSFQ circuits make use of superconducting dc bias current dividers and thus avoid static power dissipation. As a result, per-gate power dissipation is reduced by two orders of magnitude as compared to conventional rapid single flux quantum and static power dissipation is zero. The eSFQ circuits are fabricated using the HYPRES standard 4.5 kA/cm2 process. We integrate a low-pass analog-to-digital modulator with our eSFQ deserializer to enable testing at high speed. In this paper, we demonstrate the viability and performance metrics of eSFQ circuits through functional and high-speed tests. Specifically, we confirmed correct operation and present measured parameter margins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.