Abstract

This work involved continual- and intermittent-spray cooling heat transfer experiments on a flat surface to study the effects of the spray cycle, duty ratio, and spray time. The spray droplet parameters were similar, while the heat transfer coefficients for continual-spray cooling were appreciably larger than those of intermittent-spray cooling for the same pressure; however, the heat dissipated per kilogram of water for the intermittent-spray cooling was larger, especially in the non-boiling region. The results show that an optimal spray cycle and optimal duty ratio make more efficient use of the coolant in intermittent-spray cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.