Abstract

Raised floor data centers supply cold air from a pressurized plenum to the server racks through perforated floor tiles. Hence, the design of an efficient air delivery scheme requires better understanding of the flow features, through and above the perforated tiles. Different tiles with circular pores in a staggered arrangement and with the same thickness are considered. Tile sheet porosities of 23% and 40%, air flow rates of 0.56 m3/s (1177 CFM) and 0.83 m3/s (1766 CFM), and pore sizes of 3.18 mm (1/8 in.) and 6.35 mm (1/4 in.) are investigated. Tiles with 38.1 mm (1.5 in.) region blocked along the edges is compared to the base case with 12.7 mm (0.5 in.) blocked edges. Width reduced to 0.46 m (1.5 ft) from standard width of 0.61 m (2 ft) is also examined. Reduced tile width is used to simulate 0.91 m (3 ft) cold aisle instead of standard 1.22 m (4 ft) cold aisle, with potential to save floor space. A case where the rack is recessed by 76.2 mm (3 in.) from the tile edge is also included in the investigation, as there is a possibility of having racks nonadjacent to the tile edges. Particle image velocimetry (PIV) technique is used to characterize the flow field emerging from a perforated tile and entering the adjacent rack. Experiments suggest that lower tile porosity significantly increases cold air bypass from the top, possibly due to higher air jet momentum above the tile, as compared to a tile with higher porosity. For the air flow rates investigated here, the flow field was nearly identical and influence of flow rate was nondistinguishable. The influence of pore size was non-negligible, even when the porosity and flow rate for the two cases were same. Larger blockage of the tile edges resulted in higher cold air bypass from the top. Reduction in the tile width showed improved air delivery to the rack with considerably reduced cold air bypass. Recessing the rack did not affect the flow field significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.