Abstract

Stainless steel exposes high intensity of rigidity and strength. Electrical discharge machine (EDM) has the ability to machine such materials. Optimization of machining parameters is absolutely crucial for effective results of machining. The present work addresses the influence of process parameters, such as current (Ip), pulse duration (Ton), and voltage (V) on recital quantity material removal rate (MRR) on sinker electrical discharge machining of steel s-32670. Taguchi design approach has been used for planning the experiment and to establish the optimal setting level of controllable factors using signal-to-noise (S/N) ratio, and the significant contribution of these factors on output responses is analyzed with the assistance of analysis of variance (ANOVA). Minitab18 software is used to analyze the experimental design with 16 treatment condition of controllable parameters arrangement called L16 orthogonal array. Recital quantity MRR is calculated and amended for different set of experiments. The result of the present work reveals the optimal level of input factors for maximum MRR, while factors such as current and pulse duration play the most considerable role in EDM machining process. The findings from this study will be valuable for engineers to opt for optimal level of EDM machining factors to appliance s-32670 steel, which curtail the losses for the period of machining and directly elevate outlay and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.