Abstract

Abstract Detailed heat transfer, impingement surface pressure and flow field measurements on a submerged slot jet reattachment nozzle are presented. The nozzle is comprised of a rectangular region of aspect ratio 20:1, with circular ends. The jet exits the nozzle parallel to an adjacent flat impingement surface and reattaches onto it. Contours of local heat transfer exhibit three-dimensionality within the recirculation and reattachment regions with increase in nozzle-to-surface spacing. Mean and time averaged fluctuating surface pressure distribution at the center plane of the nozzle along the minor indicate that the location of peak fluctuating pressure occurs upstream of the peak mean pressure. Flow field measurements are presented for a nozzle-to-surface spacing of 3.85 exit hydraulic diameters from the surface, at a turbulent exit Reynolds number of 10 500. Surface pressure and flow field observations are used to explain heat transfer results in the recirculation and reattachment regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.