Abstract
Ionic conductivity and molar volume measurements were performed on H(2)O ice at high pressure (P) and temperature (T) in a resistive-heated diamond anvil cell. The conductivity data obtained at P = 20-62 GPa, T = 304-930 K are well fitted with a single Arrhenius equation. Isothermal volume measurements at T = 873 K, P = 30-101 GPa indicate that H(2)O ice undergoes phase transitions at P = 50 GPa and 53 GPa due to hydrogen-bond symmetrization. Combining these results, we suggest that the conduction mechanism does not change with pressure-induced hydrogen-bond symmetrization. Along the Arrhenius behavior of conductivity data, the experimental evidence for superionic conduction (>10(-1) S/cm) was found at T = 739 K, P = 56 GPa and T = 749 K, P = 62 GPa, which is significantly low temperature compared with earlier theoretical estimates resorted to the observation of a drastic rise of the melting curve. We infer that the sudden increase of the melting temperature is not related to the onset of superionic conduction, but is attributed to the phase change regarding to the symmetrization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.