Abstract

Summary This study uses laboratory experiments to investigate scale dependent hydraulic conductivity of fully developed turbulent flow in a single fracture under different fracture surface roughness, fracture apertures, and hydraulic gradients. The hydraulic conductivity for fully developed turbulent flow is defined as K = V 2 / J , where V and J are absolute values of the flow velocity and the hydraulic gradient, respectively. Three different surface roughness (fine, medium, and coarse), three different fracture apertures (1.0 mm, 2.0 mm, and 2.5 mm), and five different hydraulic gradients have been tested. Experimental evidence shows that K values generally increase with scale in a linear fashion. Surface roughness and fracture apertures appear to have the most significant influence upon the scale-dependency of K , which is less sensitive to hydraulic gradients. In general, a higher hydraulic gradient will lead to a lower K value at a given scale. The scale-dependency of K might be a manifestation of two-dimensional torturous flow within a rough surface fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.